Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
West Indian med. j ; 62(1): 3-11, Jan. 2013. ilus, tab
Article in English | LILACS | ID: biblio-1045580

ABSTRACT

Cytochrome c oxidase (COX) employs electrons obtained from cytochrome c to bring about the reduction of oxygen to water. It is known that the electrons originate from the haem edge of cytochrome c and enters bovine COX at Trp-104. It is also known that Tyr-105, Glu-198 and Asp-158 of COX subunit II play roles in the enzyme's catalysis but how these roles are linked to electron transfer remain unclear. Recently, we proposed that electrons travel from the haem edge of cytochrome c to CuA, the first metal redox centre of COX, by a hydrogen/hydride ion relay using six residues. Now using a similar computer assisted approach, we investigate the extent to which this hydride/hydrogen ion mechanism is common amongst oxidases. The crystal structures of COX from P denitrificans, R sphaeroides and T thermophilus and quinol oxidase from E coli were downloaded and their binding domains analysed. As with bovine, all four oxidases had only nine amino acid residues in that region and both the sequences and three-dimensional structures were highly conserved. We propose that these residues function as a hydrogen/hydride ion relay, participating directly in electron transfer to CuA. We further suggest that this electron transfer mechanism might be a common feature in oxidases.


La citocromo c oxidasa (COX) emplea electrones obtenidos del citocromo c para producir la reducción del oxígeno a agua. Se sabe que los electrones originan a partir del hemo del citocromo c, y entran en la COX bovina en Trp-104. También se conoce que Tyr-105, Glu-198 y Asp-158 de la subunidad II de COX, desempeñan papeles en la catálisis de la enzima, pero no hay todavía claridad en cuanto a cómo estos papeles se hallan vinculados con la transferencia de electrones. Recientemente, sugerimos que los electrones viajan del borde del hemo del citocromo c al CuA, el primer centro metálico de reacción redox de la COX, por un relé iónico hidrógeno-hidruro, usando seis residuos. Ahora, usando un enfoque similar computarizado, investigamos hasta que punto este mecanismo de iones hidrógeno/hidruro es común entre las oxidasas. Se bajaron y analizaron los dominios de unión de las estructuras cristalinas de la COX de P denitrificans, R sphaeroides, y T thermophilus, y de la quinol oxidasa de la E coli. Como en el caso de la bovina, las cuatro oxidasas tenían sólo nueve residuos de aminoácido en esa región, y tanto las secuencias como las estructuras tridimensionales presentaban un alto grado de conservación. Proponemos que estos residuos funcionan como un relé iónico hidrógeno-hidruro, participando directamente en una transferencia de electrones al CuA. Asimismo, sugerimos que este mecanismo de transferencia de electrones podría ser un rasgo común de las oxidasas.


Subject(s)
Animals , Cattle , Electron Transport Complex IV/metabolism , Cytochromes c/metabolism , Heme/chemistry , Hydrogen/metabolism , Oxidation-Reduction , Paracoccus denitrificans/enzymology , Protons , Rhodobacter sphaeroides/enzymology , Amino Acid Sequence , Thermus thermophilus/enzymology , Escherichia coli/enzymology
2.
West Indian med. j ; 58(1): 54-60, Jan. 2009. ilus, tab
Article in English | LILACS | ID: lil-672436

ABSTRACT

A deficiency of cytochrome c oxidase (COX) is associated with a number of diseases but details of the enzyme's mechanism of action especially the interaction with its substrate, ferrocytochrome c, remain unclear. It is known that the transfer of electrons from ferrocytochrome c to COX is facilitated by the formation of enzyme-substrate (ES) complexes which are stabilized by intermolecular salt bridges, however the identity of residues participating in the salt bridges remains obscure. Using the published structures of the two proteins, computer simulations were employed to model their interactions and to attempt to identify residues that participate in intermolecular salt bridges. The simulation process was guided in the main by cross-linking studies which proposed that Lys-13 of cytochrome c is paired with Asp-158 of COX. The initial enzyme-substrate complex, created by computer assisted manipulation of the two structures exhibited three salt bridges; following the application of energy minimization procedures, the number of salt bridges increased to seven and there were twenty-four intermolecular hydrogen bonds. The salt bridges emanated from: Glu-119 and Asp-221 of subunit I; Glu-114, Asp-115 and Asp-158 of subunit II and Asp-73 and Glu-78 of subunit VIb. These were paired with Lys-87, 8, 25, 27, 13, 22 and 100 respectively of cytochrome c. These results suggest that subunits I, II and VIb play direct roles in substrate binding. The results also suggest that hydrogen bonds contribute significantly to the stability of the ES-complex.


La deficiencia de la citocromo-c-oxidasa (COX) se halla asociada con un número de enfermedades, pero los detalles del mecanismo de acción - especialmente la interacción con su substrato, el ferrocitocromo c - no está aún claro. Se sabe que la transferencia de electrones del ferrocitocromo c a la COX, es facilitada por la formación de los complejos enzima-substrato (ES), los cuales son estabilizados por puentes intermoleculares de sal. No obstante, la identidad de los residuos que participan en los puentes sigue sin estar clara. Recurriendo a las estructuras publicadas de dos proteínas, se emplearon simulaciones por computadora a fin de obtener un modelo de sus interacciones, en un intento por identificar los residuos que toman parte en los puentes de sal. El proceso de simulación fue guiado principalmente por estudios de reticulación, que proponen que el Lys-13 del citocromo c está pareado con el Asp-18 de la COX. El complejo enzima-sustrato inicial creado mediante la manipulación asistida por computadora de las dos estructuras, exhibía tres puentes de sal. Tras aplicar los procedimientos de minimización de la energía, el número de puentes de sal aumentó a siete y hubo veinticuatro enlaces intermoleculares de hidrógeno. Los puentes de sal emanaron de: Glu-119 y Asp-221 de la subunidad I; Glu-114, Asp-115 y Asp-158 de la subunidad II y Asp-73 y Glu-78 de la subunidad VIb. Estos fueron pareados con Lys-87, 8, 25, 27, 13, 22 y 100 respectivamente del citocromo c. Estos resultados sugieren que las subunidades I, II y VIb juegan un papel directo en la unión del substrato. Los resultados también sugieren que los enlaces de hidrógeno contribuyen significativamente a la estabilidad del complejo-ES.


Subject(s)
Electron Transport Complex IV/chemistry , Binding Sites , Computer Simulation , Cytochromes c/chemistry , Molecular Structure , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL